Course  Section 
Title 
Days 
Time 
Location 
STAT 220  06

Statistics I

M  W    

1335
 1510

OSS 432

Description of course Genetics B/ Lab:

CRN: 20708
4 Credit Hours
Instructor: Sergey S. Berg
Formerly IDTH 220 or QMCS 220 Introductory applied statistics. Work environment; population, sampling frame, random sample, type of variables and studies. Descriptive statistics: collecting, displaying, summarizing, and interpreting data to extract information. Probability; relative frequency definition of probability, conditional probability, independence, discrete and continuous random variables, probability distribution and probability density, binomial, normal, standard normal, t, chisquare, and F distributions. Inferential statistics; sampling distribution of the sample mean and sample proportion, central limit theorem, confidence intervals and hypothesis tests for one and two means and one and two proportions. Basic applications: tests of independence, analysis of variance and linear regression. A statistical package must be used as tool. This course fulfills the third course in natural Science and Mathematics and Quantitative Reasoning requirement in the core curriculum. Prerequisites: Math placement at level of MATH 111 or above; or MATH 100, 101, 105, 108, 109, 111 or 113 NOTE: Students who receive credit for STAT 220 may not receive credit for IDTH 201

STAT 220  12

Statistics I

 T  R   

0955
 1135

OSS 329

Description of course Genetics B/ Lab:

CRN: 20714
4 Credit Hours
Instructor: Sergey S. Berg
Formerly IDTH 220 or QMCS 220 Introductory applied statistics. Work environment; population, sampling frame, random sample, type of variables and studies. Descriptive statistics: collecting, displaying, summarizing, and interpreting data to extract information. Probability; relative frequency definition of probability, conditional probability, independence, discrete and continuous random variables, probability distribution and probability density, binomial, normal, standard normal, t, chisquare, and F distributions. Inferential statistics; sampling distribution of the sample mean and sample proportion, central limit theorem, confidence intervals and hypothesis tests for one and two means and one and two proportions. Basic applications: tests of independence, analysis of variance and linear regression. A statistical package must be used as tool. This course fulfills the third course in natural Science and Mathematics and Quantitative Reasoning requirement in the core curriculum. Prerequisites: Math placement at level of MATH 111 or above; or MATH 100, 101, 105, 108, 109, 111 or 113 NOTE: Students who receive credit for STAT 220 may not receive credit for IDTH 201

STAT 220  13

Statistics I

 T  R   

1330
 1510

OSS 329

Description of course Genetics B/ Lab:

CRN: 20715
4 Credit Hours
Instructor: Sergey S. Berg
Formerly IDTH 220 or QMCS 220 Introductory applied statistics. Work environment; population, sampling frame, random sample, type of variables and studies. Descriptive statistics: collecting, displaying, summarizing, and interpreting data to extract information. Probability; relative frequency definition of probability, conditional probability, independence, discrete and continuous random variables, probability distribution and probability density, binomial, normal, standard normal, t, chisquare, and F distributions. Inferential statistics; sampling distribution of the sample mean and sample proportion, central limit theorem, confidence intervals and hypothesis tests for one and two means and one and two proportions. Basic applications: tests of independence, analysis of variance and linear regression. A statistical package must be used as tool. This course fulfills the third course in natural Science and Mathematics and Quantitative Reasoning requirement in the core curriculum. Prerequisites: Math placement at level of MATH 111 or above; or MATH 100, 101, 105, 108, 109, 111 or 113 NOTE: Students who receive credit for STAT 220 may not receive credit for IDTH 201

STAT 360  01

Advanced Statistical Software

 T  R   

1525
 1700

OSS 429

Description of course Genetics B/ Lab:

CRN: 22277
4 Credit Hours
Instructor: Sergey S. Berg
(Formerly IDTH 360) This course introduces students to an advanced statistical software package to effectively apply statistical methods, in general. Students create data sets from raw data files, create variables within a data set, append and/or modify data sets, create subsets, then apply a whole host of statistical procedures, create graphs and produce reports. The course will be based on several leading advanced statistical software packages, which will be chosen from semester to semester to match the needs of the community.
Prerequisites: STAT 220 or STAT 314
