Damper Standard System for MTS Systems Corporation

Benn Horrisberger
Scott McClelland
Brad Sell
Holly Wilcox

Advisor: Mike Hennessey

How Many Engineers does it take to...
Problem Statement

To develop a damper standard which will be used to characterize the performance of MTS damper systems.

For internal use on the 850 system
What is a Damper?

Why is there a need for this system?

Currently MTS can accomplish:
- No-Load velocity testing
- Static load testing

- NO STANDARD FOR DYNAMIC LOAD AND VELOCITY TESTING!
- MAXIMUM LIMITS OF THE SYSTEM ARE UNKNOWN!
Considered Designs

Hydraulic Systems

Pneumatic Systems

Electro-Magnets

Magneto-Resistive Fluids

Selected Design

MTS Technician

Program

850

Damper Standard

Force & Velocity Feedback
Damper Standard Breakdown

Servo valve

Manifold

Actuator

Software Design
Completed Damper Standard

10 Hz or 126 in / sec

Testing

Procedure
- Half orifice adjustments
- Force limited by tested machine
- 1Hz – 16Hz frequencies

\[F = A_p \left(\frac{A_{850} \cdot V}{S \cdot Q_{rated}} \right)^2 \cdot \Delta P_{rated} \]
Theoretical Model

Test Results
User’s Manual

- Instructions on how to use the damper specimen
 - Initial setup
 - How to run tests
 - Product information about the specimen
 - Warnings / Cautions
 - Trouble Shooting

Project Costs

- Total Cost ~ $31,500
 - Materials (actuator, servo-valve, manifold, hoses, fittings etc...)
 - 143 parts
 - Estimated $10,700
 - Labor
 - Student @ $10.00/hr = $13,000
 - About 1300 hours
 - Assembly = $6400
 - 19 hours
 - Engineering = $1400
 - 69 hours
Conclusions

- Multi-Disciplinary Project
 - Mechanical Design
 - Manufacturing
 - Fluid Flow
 - Heat Transfer
 - Software Design
 - Testing
 - Project Management

Questions?