The Best Practices in Teaching and Tutoring Mathematics

Rachel Reinecke & Hannah Rumon

Advisors: Molly Peterson & Rebecca Glover

Introduction

Although mathematics professors at undergraduate institutions strive to help as many students as possible with individual meetings and office hours, it can still be a challenge to reach each student in their course. Math drop-in tutoring centers can relieve some of this pressure on professors and bring additional benefits to students. These tutoring centers can have a wide variety of hours staffed with many tutors, so students can stop in and ask a question or stay awhile to work. The fact that tutors are undergraduates also can benefit a tutoring center because peers often have a more powerful influence on a students’ learning than a professor (Sutherland; Colvin). Because peer tutors share similar experiences with their students, they can understand a student better than a professor and create a welcoming environment. Further, undergraduate tutors have had academic success in math and as peers, are ideally poised to “overcome the resistance and apathy toward learning” from undergraduates that faculty may encounter (Sutherland 157).

Despite the added value of math peer tutors, there are many challenges as well. Tutors may have to deal with students’ anxieties and misconceptions about learning math, among many other issues. Math anxiety, although prevalent throughout society, is particularly common with college students (Perry). Many undergraduate students take a math class only to satisfy a requirement without a desire to understand the material. Furthermore, students may carry a lot of baggage from their math experiences and believe in common stereotypes about what it means to succeed in math. For instance, they may believe that an innate knowledge is required to excel, that men are better at math than women, or that students of color are less likely to succeed. These stereotypes can often affect the mindsets of both the students and the tutors. In addition, students often try to take advantage of tutors as they are peers. Tutors may also have difficulty correctly challenging the students when working on math problems, which could lead to them just giving the students answers without helping them understand the material.

Even though faculty are aware of the benefits, they can still be skeptical of how well peer tutors can deal with these challenges. Faculty may feel that tutors “coddle students and prevent them from grappling with course content” (Howard 86). In particular, they may worry that tutors often give too much assistance. They may also be concerned that students will resort to the tutors help rather than using traditional study skills or attending office hours (Howard). Despite this, faculty would continue to say there is value in tutoring centers; they provide a place for students to do their math homework and study and help students that faculty may not be able to reach themselves.

One way to combat pushback from professors and deal with the challenges of peer tutoring is by creating tutor training. Our research focused on how to effectively create tutor training modules for the MaRC, the Mathematics Resource Center, at the University of St. Thomas. We wanted to provide tutors with the resources and skills to understand the students they are tutoring. As research shows peer teaching and learning can be incredibly effective, our
work resulted in peer-to-peer-to-peer tutor training modules published on Canvas, an online learning system, that consisted of videos, articles, discussion boards, PowerPoints, and worksheets on pedagogical techniques and general information to improve their tutoring.

Background

The MaRC, located at the University of St. Thomas, is a drop-in peer tutoring center for mathematics. As a drop-in tutoring center, students come and go as they please, meaning that meetings with tutors are not scheduled regularly but available when needed (Cooper). The MaRC can help students in MATH 005, Basic Math Skills, through MATH 200, Multivariable Calculus. With long hours (most days of the week open from 9am to 9pm) the tutors interact with and affect many students. There are approximately 3,000 non-unique check-ins to the MaRC a semester; this tutoring center is heavily utilized by St. Thomas students.

The MaRC is staffed with three to four undergraduate peer tutors at a time. A peer tutor is defined as “a student who has more expertise in a specific subject who guides and facilitates the learning of other students while also providing academic support and enhancement” (Power of peers, Colvin). Their majors include actuarial science, economics, engineering, physics, math education, applied math, and computer science. All the tutors have a strong math background, reflected in their majors and their grades, and they all have taken at least through MATH 200. Only three of the thirty three total MaRC tutors from spring semester 2018 were math education majors. These students have a strong math background plus pedagogical knowledge from their education coursework and experience in classrooms. Throughout their coursework, they are educated on pedagogy, which is defined as a teaching strategy for an academic subject (“Pedagogy”) such as being able to teach to a student's learning style or the importance of leading a student through a problem without giving away an answer. These students are well equipped to deal with a lot of situations that arise when tutoring. However, many of the tutors who are not math education majors do not necessarily have these pedagogical skills. Sometimes knowing the mathematics is not enough to be able to teach it effectively (Walsh). Therefore, it is important to train undergraduate tutors about pedagogical techniques to employ while working in the MaRC.

Tutors face many challenges. To start, tutoring can be difficult because students often lack the necessary study skills that are needed (Howard). They may procrastinate on their homework or do their homework with the goal of completion rather than to learn the math. Another issue is that there are some students who take advantage of the tutors. For example, students may not try a problem before calling a tutor over, expecting them to solve it for them. Further, students may not understand that the tutors are not experts (Sutherland). They may assume that undergraduate tutors have as much expertise as professors. This can cause issues because the students may get frustrated when a tutor cannot answer a question right away or does not know how to do a problem. On the other hand, tutors may feel they have to be able to answer all of the questions a student asks. In addition, they may have a high expectation for themselves to be as much of a resource as a professor (Sutherland). While these challenges are common among all peer tutoring programs they are also problems within the MaRC.

The MaRC is unique as a drop-in tutoring center that is specifically for math, offers tutoring for wide range of classes, has long and accessible hours, and is staffed by undergraduates. In contrast, many undergraduate tutoring centers are one-on-one. One-on-one
tutoring is when a tutor and a student have regularly scheduled meetings to work on the subject matter (Howard). Often a tutor has time to prepare ahead of time for the session and they know what the student is working on. As the student and tutor meet regularly, they develop a good relationship over time and the tutor can gain a deeper understanding of the student and how to best help them (Howard). A drop-in tutoring center, the tutors work with many different students and meetings with them are not scheduled. This means that there are times when the MaRC is very busy and there are not enough tutors for the amount of help needed by the students. In addition, tutors may only meet with a student once and do not get the opportunity to get to build a relationship with the student. Further, with such a wide range of students visiting the MaRC, tutors do not know what they will be helping a student with before sitting down with them. One moment a tutor could be helping a student solve a linear equation and the next they could be doing integration by parts.

Tutors are hired based upon both their math knowledge and tutoring skills. The initial application requires the candidate to submit a resume, a paragraph on why they think they would be a good tutor, and a reference of a math professor. The current MaRC director then holds an interview with him or her. The interview includes a list of set questions about qualities the candidate may have that will make them a good tutor. In addition, during the interview the candidate has to tutor the director acting as a student confused on a calculus one problem, such as a tangent line problem. After the interview, the director reaches out to the faculty reference listed on the candidate’s application to see if the reference believes the student would make a good tutor. Each semester, the director hires between eight and twelve new tutors.

In the past, MaRC tutor trainings focused on only mathematical knowledge with quizzes and tests. Once a tutor passed a certain amount of the math tests they moved up tutor levels where they were paid more and given more responsibility in the tutor center. Currently, the MaRC tutor training consists of both tutor training skills and mathematical knowledge. At the beginning of the school year the director holds a three-hour tutor training meeting. In this meeting, she goes over general tutoring concepts, policies and what to do in difficult situations. The director also reviews MATH 101, finite mathematics, with the tutors because although many students from this class visit the MaRC, none of the tutors have taken the course. Throughout the year, there are one-hour tutor training meetings once a month to work through math topics as well as best tutoring practices. In addition to these meetings, tutors must work through a weekly math problem on Canvas. This is generally a problem from a lower-level course that many other students are expected to video struggle with. By having the tutors work through the problem, they can be more prepared when a student may ask them a question about the same topic.

Although the tutors are not lacking in math skills, they may lack pedagogy skills needed to tutor math effectively. The MaRC has steady training for the mathematics but could use a consistent training on pedagogy. Since tutors interact and affect many students, training them on how to interact with and best help students is particularly important. Training on pedagogy can help the tutors develop these skills.

Tutor Training Research

Specific research outlining training for drop-in tutoring centers is sparse, and adding the aspect of math to a drop-in setting makes research nearly non-existent. One journal article does expand on training for a drop-in tutoring center but in the form of a 2-credit training course which includes developing teaching techniques and questioning skills (Cooper). This training
would be difficult to implement in the MaRC because often MaRC tutors may only tutor for a semester and there is a lot of turnover with tutors. With an added course to take, this may deter students from becoming a tutor. In comparison, training for one-on-one tutoring and tutoring for undergrads is well researched and documented.

There are many suggestions on how to keep tutors up to date on recent pedagogical knowledge. For example, tutors can subscribe to educational journals or attend professional training seminars (Patterson). However, in the case of the MaRC tutors do not have a pedagogical foundation to build on. Thus, this tutor training would not work for the MaRC. Another research article stated that tutor training should include the following: an orientation to explain the goals and organization of the tutoring center, general tutoring techniques, educating about student services on campus, questioning skills, study skills, special needs for international students or students with disabilities, and motivation techniques (Mohr). From this information, we were able to get a lot of content ideas for the tutor training modules.

Although a lot of research describes ideas of the content that should be a part of tutor training such as tutoring strategies, campus resources, diversity, and communication skills (Rings and Sheets) it does not expand on how the training should be conducted. Some articles outline tutor training such as having activities, mathematics specific training and discussions (Lahme and Robinson) but are for tutors who are used in a different way than the tutors in the MaRC, such as they support professors in the classroom, lead learning communities or one-on-one tutoring. Altogether, research on tutor training gave us many ideas of the content that should be a part of the training, but not about how the training would be more effectively conducted for a drop-in tutoring center.

In addition to researching content for tutor training, it was important to research how to deliver the tutor training. There is increasing popularity in higher education of educational videos and online learning (Sun and Ganesh). There are many benefits to learning through videos and online, they are very convenient and accessible, they can be used over and over again and provide consistent information to everyone (Mbuva). Online learning also facilitates dynamic interactions between a student, the teacher and other students (Mbuva). With the constant influx of MaRC tutors, the need for a consistent training that can be accessed at any time at the tutors own pace is very appealing. Because of this research, the tutor training we created is in an online setting including videos and online discussion boards.

Methodology

From our initial research, we found many main ideas that we determined would be essential for a successful tutor training program. However, when we further examined a key topic, we realized there were additional concepts we had to talk about in order to completely cover it. Using all of this information, we created a concept map of the key ideas and the
concepts that stemmed from them, as shown in Figure 1.

We then chose topics for tutor training modules from this concept map. Once we picked which concept to focus on, we accumulated research about that specific topic. Then, we picked the main ideas that we knew were necessary to include, determined by our research, in the module in some way whether it be in a video, an article, or a paragraph written by us. In addition, when we created videos, we also created a script that outlined what we wanted to say.

In order to facilitate peer-to-peer-to-peer learning and a conversational video, our faces were incorporated into the videos. Because conversational videos are highly recommended by researchers (Brame), the videos lack verbal citation as this would lose our peer audience. Citations are therefore included at the end of the modules to give us credibility and allow tutors to read more if they want to. Having goals is important to make effective educational videos, so we explicitly stated the purpose at the beginning of each video (Brame). Our videos are under 5 minutes, so they are easy to watch. Research also shows it is important to have both audio and visual elements; therefore, we added PowerPoint slides to introduce the video, emphasize important phrases or definitions, add visual aids, and to summarize the video (Brame). Furthermore, some modules consist of videos that were not created by us as we felt that they had already covered that material well. One video was a TEDed on math anxiety (Rubinisten).

Through the summer, our video process evolved. To film the videos, we collaborated with an on-campus resource, STELAR. Their goal is to “cultivate transformative learning at the intersection of technology, pedagogy, and people” (stthomas.edu/stelar) through their resources. STELAR has two filming and recording studio options. The first studio we used was intended for
faculty to produce classroom resources, while we were more concerned that the quality of our videos would not look professional enough for the long-lasting use. Their more professional, TV studio, fit our needs better to create well-polished videos. In some of our videos that involved specific tutoring strategies, rather than pedagogical background, filming took place in the MaRC because that is where the MaRC tutors will be implementing these strategies. A student worker from the STELAR center came to film us in the MaRC as we directed the shots. Finally, once we had the film, we edited the videos in Adobe Premiere Pro where we were also able to add PowerPoint slides and were edited multiple times.

Although videos were a large component of the modules, we also recognized they were a very passive way of learning. Passive learning is teacher based, meaning that the teacher lectures and does the work while the student is expected to listen (Herr). The students does not get to engage with the subject matter. Since passive learning is not the most effective way of learning, we wanted to make sure that our tutoring modules had active learning components to them (Lahme and Robinson; Reinhart). Active learning is also known as student-based learning. Rather than the teacher solely lecturing, the student has the opportunity to explore the subject and reflect on what they have learned (Herr). Therefore, along with the videos there are quizzes, readings and discussion questions so the tutors can reflect on the topic of the modules along with explore it themselves.

Tutor Training Modules

Each pedagogical training module we created in Canvas varies in content and format, but they follow the same general outline. Each module begins with a pre-lesson discussion board with questions to get the tutors to start thinking about the topic of the module. The format of the discussion board allows for the tutors to interact with each other which may engage the tutors more. While the tutors work through the module, they will watch videos or read articles about the subject. We also provide some commentary before or after the videos or articles to highlight key points or connect the ideas to another topic. Throughout the modules, there are ungraded quizzes that act as checkpoints. These checkpoints allow for the tutor to process the knowledge that have gained, but the other tutors will not be able to see their responses. At the end of each module, there is a post-lesson discussion board to help the tutors reflect more deeply with their peers and together they can connect these ideas to tutoring in the MaRC. In what follows, we detail the modules we created and briefly discuss the educational research behind each topic.

Your Role as a Peer Tutor

Research has shown that tutors need a clear definition of their role in order to be successful (Power of peer tutors, Colvin). A large part of their role as a tutor is to understand the MaRC itself and what the MaRC’s definition of success it. Therefore, we created a Role as a Peer Tutor Module to explain this to the tutors. The main purpose of this video was to define their roles, talk about the importance of their role, and addressed the challenges of being a MaRC tutor. Throughout the video, we highlighted the fact that they were not expected to be experts in mathematics and also gave them suggestions on how to deal with difficult situations.
Not only does the tutor need to understand their role, but so do the students. If the tutors and students’ expectations and desires do not align, effective tutoring can be difficult (Colvin, Sutherland). Further, as a drop-in tutoring center, it can be challenging to communicate this role with such brief interactions with students. Sometimes students can use tutoring centers incorrectly but being explicit about the goals of the tutoring center is one way to combat this (Howard). The Introduction to the MaRC Video was created to combat some of these difficulties. The video includes an explanation of how the center works, what resources are available there, and suggestions for the students. We explained to the students, trying to set some expectations, to be patient for tutors and use extra time to study, and the MaRC tutors will try their best to help. Because it is important to create a welcoming environment (Defeo), this video sought to make students feel more comfortable utilizing the tutoring center. The video has been posted on the St. Thomas MaRC website (stthomas.edu/marc) so that everyone has access to it and will also be shown to MATH 005 through MATH 200 students at the beginning of each semester when the MaRC tutors visit the classes.

Growth Mindset

Mindset is important to discuss because it can affect the attitudes of tutors and the students. Psychologist Carol Dweck, who was the first to define growth and fixed mindset, explains that in her research she found that “how [students] perceive their abilities played a key role in their motivation and achievement, and we found if we changed students’ mindsets, we could boost their achievement.” Growth mindset is the belief that a persons’ intelligence and abilities are malleable and can be developed through hard work (Aditomo, “Decades...”). The plasticity of the brain shows that as people gain more experience and learn, new connections are made in the brain showing that intelligence is changeable (“Decades..”). In comparison, many students have a fixed mindset about math, that their intelligence and mathematical abilities were determined at birth, therefore they are difficult to change (Aditomo). Therefore, the main goal of the module was to help show the tutors that their mindset can affect students learning and a students’ mindset can greatly impact that success and motivation. In addition to teaching about growth mindset, the module focuses on the tutors reflecting on their own mindsets and how they can use this when tutoring as well as in their lives.

Math Anxiety

Frequently having a math fixed mindset and math anxiety go hand in hand. Math anxiety is defined as when people have a negative reaction when placed in situations that require math (Maloney, Perry). Reactions include freezing on math tests, the inability to do simple computations and struggling to start math assignments (Maloney). Much of this anxiety comes from a person’s personal history; factors such as a teachers’ attitude along with math’s bad image in society can affect it (Perry). Other factors that can contribute to math anxiety include race and gender. Jo Boaler, professor at Stanford University, explains that 44% of middle school students would rather take out the trash than do their math homework, showing it is not uncommon for people to despise math. In
general, people believe more than any other subject that an innate ability is needed to be good at math (Boaler). We determined that it was particularly important to cover this because college students are especially prone to having math anxiety (Perry). The Math Anxiety Module focuses on introducing the concept to the tutors, so they can recognize the signs and suggest some strategies to help students suffering from it.

Learning Styles

As with math anxiety, tutors may have difficulty identifying their students learning style, especially when they differ from their own. Research has shown that, every person learns differently; therefore, people can have different learning styles or different ways of absorbing, processing, comprehending, and retaining information (“Learning Styles”). For example, some students may learn better when a tutor draws pictures and while others learn by verbal explanation. So, it is important for tutors to understand how a student learns to be able to teach them and we want for the tutors to be able to adjust their tutoring strategy depending on what learning style the student has which in turn will help the student learn more effectively (Patterson). In this module, we included a quiz for tutors to help them determine their own learning styles, along with brief readings about other styles to allow them to get a deeper understanding about how other people learn. The module also teaches the tutors to various ideas on what they can do to help students who have different learning styles (Lahme and Robinson).

Educational Psychology: ZPD, Cognitive Apprenticeship and Scaffolding

The Educational Psychology Module provides tutors with more specific strategies along with educational research and teaches them how to respond to students. The first portion of the module talks about two learning theories, specifically the Zone of Proximal Development (ZPD) and Cognitive Apprenticeship which serves as a background to talk about a specific tutoring strategy called scaffolding. Lev Vygotsky, a Russian psychologist, created the idea of ZPD, which is the gap between what a student can accomplish independently and what a learner can do with help of a more knowledgeable person (Shabani). The goal when teaching or tutoring is to keep learners within their ZPD, or the yellow zone. If students are challenged too much, they would be pushed out of their ZPD, into the red zone as seen in Figure 2, and become too frustrated to learn. At the same time, if students are not challenged enough, and stay in the green zone, they are too comfortable and are not truly learning. It was important to tell the tutors that students may feel uncomfortable in the yellow zone, but this is where they learn best. Another learning theory based off ZPD is cognitive apprenticeship, or the pedagogical theory that breaks down the learning process into six concrete steps: modeling, coaching, scaffolding, articulation, reflection,
and exploration (Collins). These steps are sequenced to reflect the students increased understanding of the topic. The purpose of a video on this topic was so tutors could see how the students they tutor should ideally move through the learning process.

Scaffolding, a strategy in which a teacher provides enough support for the student to learn while still allowing them to explore the topic, is arguably the most important step in cognitive apprenticeship (Valkenburg, Collins, Dale and Scherrer). We decided to give the tutors a specific example of a tutoring strategy in order to give them an idea of how to most effectively help students in two videos about scaffolding. In these videos, we gave tutors some more specific help on what strategies scaffolding involves, such as questioning skills, hints, and patience. The amount of scaffolding a tutor uses is dependent upon the students current understanding (Valkenburg), so being able to ask directed questions to students is particularly important (Reinhart). Portions of the scaffolding module include a 10 Scaffolding Strategies video and 3 example videos of how scaffolding could look while helping a student. Overall, scaffolding is important to discuss because it will help tutors to engage their students at a level most beneficial for them and move them toward independent learning and critical thinking (Valkenberg), which is the ultimate goal of tutoring in the MaRC.

Future Work

Although our modules included a lot of important information, there is a lot more information to be included to make tutor training even more successful. In the future, we would add modules on role models, micro-aggressions/language, culturally relevant pedagogy, equity issues in mathematics, and addressing more difficult situations. Part of being a peer tutor is being a role model. Students are always listening and watching tutor interactions with other tutors, professors, and students. As tutors are a big influence on students it is important for them to be aware of this. In addition, language is important because it can affect a student’s mindset or can create math anxiety. Microaggressions are a specific type of language for tutors to be aware of because they deal with diverse students. Furthermore, knowing and understanding culturally relevant pedagogy, the idea of addressing cultural elements in teaching to promote academic achievement, (Wilson), helps students achieve.

In addition to adding these modules, we would also want to create a pre-test, taken before working through the modules, and a post-test, after completing all of the training modules, to evaluate the effectiveness of the tutor training we created. This would allow us to see how the tutor’s knowledge has grown and where we could fix or change a part of the tutor training. Furthermore, this will lead to future research on how to adapt and change the tutor training. Finally, it would allow us to see if the tutors already understood a certain concept well. If they do, then the tutor training would need to be focused on a different topic.

Conclusion

Overall, our research this summer guided us in creating tutor training for the MaRC. This research focused on pedagogical methods so that tutors have both pedagogical skill and mathematical skill. When researching other tutor training videos online, many of the videos did
not follow with the research we found on what made a good educational video. For example, many were not straightforward, or they were just example-based videos. The way we set up the tutor training is very unique as there does not seem to be other tutor training set up this way, especially for math drop in tutoring centers. In addition, the tutor training is unique because it is geared towards the MaRC and the MaRC’s needs. For example, not all tutoring centers are drop-in or employ undergraduate tutors. Plus, our tutor training can be used repeatedly because it is accessible online. Even the MaRC video we created, for the population of St. Thomas, will be used every semester and is always accessible on the St. Thomas website. Finally, this will be implemented this fall for the MaRC tutors which means that our research is immediately making a difference in the MaRC which will affect the whole community of St. Thomas.
Works Cited

Dweck, Carol. “Carol Dweck Revisits the 'Growth Mindset'.“ *Education Week*, 23 Sept. 2015.

Sutherland, Kathryn A. “Nurturing Undergraduate Tutor's Role in the University Teaching Community.” *Mentoring & Tutoring: Partnership in Learning*, vol. 17, no. 2, 2009, pp. 147–164.

Wilson, Cody Blake. “How to Engage Culturally Relevant Pedagogy (CRP).” *Teach For America*, 21 Sept. 2017,
Appendix

Example Module

Below is an example of one of the modules we created. It starts with the view of each portion of the module and then works its way through each part.

<table>
<thead>
<tr>
<th>Math Anxiety Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-lesson Question</td>
</tr>
<tr>
<td>What's Math Got to do With It?</td>
</tr>
<tr>
<td>Math Anxiety Video</td>
</tr>
<tr>
<td>Math Anxiety Post-Lesson Discussion</td>
</tr>
</tbody>
</table>

Pre-lesson Question

Quiz Instructions

Answer the following question in your own words to the best of your ability.

<table>
<thead>
<tr>
<th>Question 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Why do you think people dislike math?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>What do you think math anxiety is? Who might have it?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>How can math anxiety and the general aversion to math affect the MaRC?</td>
</tr>
</tbody>
</table>
What's Math Got to do With It?

Jo Boaler is a professor of math education and promotes math education reform. In her book, What's Math Got to do With it? the introduction explains why people tend to avoid math.

Introduction

Understanding the Urgency
Math Anxiety Video

Math Anxiety is a common reason why students visit the MaRC. In fact, it is very common with college students in general. Part of the reason for this is because math has a bad image, as talked about in the introduction to Whose Math Got to do With It. People assume math is really difficult and requires innate knowledge—which is simply not true.

An earlier module talked about growth and fixed mindset. These ideas can be specifically applied to math! Many people have a fixed math mindset. For example, people may believe that math cannot be learned and that it is something you are born with knowing. This is part of the reason why people have math anxiety. This video talks more in depth about math anxiety and why it occurs.

Knowing about math anxiety is not enough, we also need to think about how we are going to help combat this in your tutoring sessions. Some ideas are:

- Don’t immediately reject wrong answers, try to determine the question the student was answering
- Use symbolic statements and pictures
- Share personal experiences about learning math so students know they are not alone—THIS IS VERY IMPORTANT
 - Knowing that someone who is really good at math and is a tutor can make students realize it possible to be successful too
- Encourage students to show all steps so they can follow their steps, see their thought process, this makes it easier to ask them questions
- Use a growth mindset
- Give students time to think
Math Anxiety Post-Lesson Discussion

Rachel Reinecke
All Sections

Jul 5 at 12:02pm

Please answer the following questions and respond to two other people.

- What is the most surprising thing you learned in the *What's Math Got to do With It* reading?
- What has changed about your knowledge of math anxiety and how can you use this in the MaRC?
- Now that you have learned about math anxiety, have you seen math anxiety in the MaRC?

This topic was edited by Hannah Rumon

Search entries or author Unread

Reply