The Barry M. Goldwater Scholarship and Excellence in Education Program was established by Congress in 1986 to honor Sen. Barry M. Goldwater (R-Ariz.), who had served 30 years in the U.S. Senate. The program was designed to foster and encourage outstanding students to pursue careers in mathematics, the natural sciences and engineering. This year the program awarded 283 scholarships for the 2014-15 academic year to undergraduate sophomores and juniors from the United States.

Dr. Kyle Zimmer, associate professor of biology who is St. Thomas’ Goldwater program chair, said, “The Goldwater Scholarship is a national competition and is one of the most competitive, prestigious awards an undergraduate in the STEM fields can receive.”

Gentle, a St. Michael, Minn., native, said, “As a research chemist or a professor at a research institution, I hope to lead and mentor teams in the development of new materials, such as materials for solar cell technology. Overall, I hope to contribute to solving world problems such as the global search for feasible renewable energy.” After she graduates, she plans to pursue a Ph.D. in materials chemistry, and is leaning toward a career in academia or as a research chemist in industry.

Millholland, a physics and applied mathematics double major from Madison, Wis., said, “Although I am unsure exactly which area of research I plan to pursue, I am interested in the application of computationally intensive modeling techniques to the field of quantum cosmology. This field involves the study of quantum mechanical descriptions of the formation and evolution of the early universe.” After graduation she’d like to attend graduate school in astrophysics or particle physics and someday teach at the university level.

Sathe, of Hopkins, Minn., plans to pursue a Ph.D. in biomedical engineering, conduct research in biomedical science and teach at the university level.

The Goldwater Scholars were selected on the basis of academic merit from a field of 1,166 mathematics, science, computer science and engineering students who were nominated by the faculties of colleges and universities nationwide. A total of 172 of the scholars are men, 111 are women, and virtually all intend to obtain a Ph.D. as their degree objective. Twenty-two scholars are mathematics majors, 191 are science and related majors, 63 are majoring in engineering, and seven are computer science majors. Many of the scholars have dual majors in a variety of mathematics, science, engineering, and computer disciplines.

The one- and two-year scholarships will cover the cost of tuition, fees, books, and room and board, up to a maximum of $7,500 per year.

Recent Goldwater scholars have been awarded 80 Rhodes Scholarships, 117 Marshall Awards, 112 Churchill Scholarships and numerous other distinguished fellowships. Since 1998, 23 St. Thomas students (including Gentle and Millholland) have received Goldwater Scholarships.

Since 1989, the Barry M. Goldwater Scholarship and Excellence in Education Foundation has awarded 7,163 scholarships worth approximately $46 million.

For more information about the Goldwater Scholarships, contact Zimmer, (651) 962-5244.

]]>

At Northwestern, the Department of Engineering Sciences and Applied Mathematics is part of the School of Engineering, and, as a result, I was required to take engineering courses, such as statics and dynamics, fluid mechanics and operations research, in addition to the courses required for my applied mathematics major. Of the engineering courses, I mostly enjoyed mechanics, so when I decided to stay at Northwestern and get a Ph.D. in applied math I knew that I wanted conduct research in an area that combined mathematical modeling, mechanics and scientific computing, which is a branch of applied math that utilizes computer programming to solve mathematical models to ultimately understand the nonmathematical problem at hand. Out of this came my Ph.D. thesis on using the level set method, a type of computational method that allows one to track the motion of interfaces, to simulate fracture due to cyclic loading.

So, how did I get from research in fracture mechanics to mathematical biology? On Jan. 7, 2002, Professor Howard Levine gave our weekly applied mathematics colloquium on modeling the vascularization of cancerous tumors. I was in awe. At that point, mathematical biology was not as popular as it currently is, and I had no idea that you could apply mathematics to biology. Since at that time I was finishing my Ph.D. and was on the job market, I decided to focus my job search to postdoctoral research positions in mathematical biology. This is how I ended up at the University of Minnesota working with Professor Hans Othmer. As a postdoctoral research associate, I realized that not only can one apply mathematical principles to biological problems, but that mechanics plays an important but poorly understood role in biological processes.

Mathematical biology is a huge field ranging from mathematical modeling of disease spread over large geographical areas using continuum population models to modeling protein transport during cellular division using discrete particle dynamics models. I work to mathematically model the movement and growth of single cells and soft tissues. Many of the models I use to understand growth and movement are based on principles of deformable body mechanics. Traditionally, biology has been considered to be an experimental science in which mainly qualitative observations are important. Over the last one to two decades, the need for quantitative analysis in biological fields has significantly increased. The way I see it, there are two major reasons for this. First of all, oftentimes a biological experiment can address one small aspect of a much larger and more complex process. For example, there are experiments that are aimed at understanding how proteins are transported during cell division and other experiments whose goal is to understand the magnitude of forces required to divide a cell. But, how does protein transport affect these forces? Mathematical models can incorporate data from multiple experiments and lead us to a better understanding of the interplay between various subprocesses. Second, many experiments, especially those that require manipulation of mechanical properties on a cellular level, are extremely difficult to perform. Simulations based on mathematical models can provide insight as to what might happen in a biological system on which an experiment cannot be done.

While I have worked on mathematical models aimed at understanding the interplay between the biochemistry and mechanics involved in a growing vertebrate limb, the effect of mechanical stresses on growing tumor, and the stresses that form in a brain that is growing within an abnormally developed skull, I have spent the majority of my time attempting to gain a better understanding of how mechanical interactions with the environment affect the movement of single cells in that environment. Surprisingly, the mathematical models describing all of these systems are very similar. Through the Center for Applied Mathematics Summer Research Program and through an NSF grant that several of my colleagues and I have received, I have been very fortunate to work with several talented and hard-working St. Thomas students on these mechanical models of cell movement. One group of students developed and programmed a model in which the goal was to investigate how the strength of attachments a cell makes with a flat surface affects the way that it moves over that surface. Another group worked on modeling cell movement through a series of deformable barriers meant to replicate the collagen fibers in the human body. The goal of this project was to understand how the mechanical properties of collagen fibers affect the ability of a cell to move about. Through both of these projects we have learned that mechanical properties of the cell and its surroundings have a huge effect on a cell’s ability to move. Through a joint project with an industrial partner, I am in the process of extending this student work to learn more about the interplay between mechanical properties of the cell and intracellular biochemical processes.

My work with students on these projects has been especially rewarding. Both groups mentioned above have presented their research at professional research conferences and have had a taste of what it means to be a researcher. Through their research projects both groups have grown in their mathematical intuition, computational programming and problem-solving skills. Most rewarding to me, both groups of students have developed an appreciation of the usefulness of mathematics in helping us understand how (nonmathematical) things work.

*Magdalena Stolarska is assistant professor of mathematics at the College of Arts and Sciences and associate director of the Center for Applied Mathematics.*

*From Exemplars, a publication of the Grants and Research Office.*

I have spent much of the last 12 years teaching various topics in statistics, research methods and measurement to undergraduate and graduate students at St. Thomas and elsewhere. My students typically have been hard working and eager to learn. They came to class and took notes. They learned the steps of important processes. Their nodding heads indicated that they understood the material as it was being presented to them. And yet, these bright and capable students often had difficulty applying course material in novel or ambiguous but true-to-life contexts. Despite the clarity of my explanations or the number of times I demonstrated how to apply concepts and processes, students often didn’t know what to do with what they knew.

I came to understand that *remembering* and *understanding* are necessary, but not sufficient, for the kind of “knowing” that allows one to think critically and solve complex problems. This realization seemed particularly problematic, as it is precisely this type of“knowing” our students need now, in our increasingly technical and competitive world.

While this need for knowing exists in all disciplines, it may be especially urgent for the Science, Technology, Engineering and Mathematics (STEM) disciplines. In 1996, the Advisory Committee to the National Science Foundation, responding to a call to improveundergraduate STEM education, published “Shaping the Future: New Expectations for Undergraduate Education in Science, Mathematics, Engineering, and Technology.” One of its recommendations called for faculty teaching undergraduate STEM courses to “build inquiry, a sense of wonder and the excitement of discovery, plus communication and teamwork, critical thinking, and lifelong learning skills into learning experiences.”

At St. Thomas, STEM faculty members have taken to heart the call to actively engage students through critical thinking and collaborative problem solving.

In spring 2010, Kris Wammer, associate professor of chemistry, organized a two-day workshop on the use of Peer-Led Team Learning (PLTL) in entry-level STEM courses. PLTL involves groups of six to 12 students who take the same course (e.g., Chemistry111) and work with trained peer-facilitators to address problems that facilitate conceptual understanding of course material and the development of problem-solving skills. The workshop was well attended by biology, chemistry, mathematics, computer and information sciences, geology, physics and engineering faculty. At its conclusion, faculty decided to initiate a PLTL program for students taking introductory STEM coursesat St. Thomas.

After an intense summer of planning, the PLTL program was ready to launch: A program structure consisting of a coordinator, four departmental liaisons and 16 to 20student peer-facilitators was agreed upon; shortterm funding to support a program coordinator and pay peer-facilitators for the 2010-2011 academic year was secured from the dean of the College of Arts and Sciences and the Biology Department; discipline-specific peer-facilitators were recruited and trained; concept-focused, problem-based activities were developed by departmental liaisons for use by peer-facilitators in small-group sessions; formal PLTL program evaluation procedures were devised; and a name for the PLTL program was created: the STEM Learning Community (LC) Program.

In fall 2010, STEM LCs emphasizing collaboration, active learning, problem solving and critical thinking were introduced. Each semester since then, STEM LCs have been offered to about 300 chemistry students, 200 biology students, 130 calculus students and 90 statistics students, most of whom are first-year college students at St. Thomas. Between 180 and 240 students participate in the STEM LCs each semester.

Research on the use of collaborative learning strategies in undergraduate STEM education suggests that they are a highly effective strategy for promoting the kind of “knowing” that is expected of STEM professionals. Evaluation of the STEM LC programat St. Thomas indicates that benefits for participants and peer-facilitators are many: learning effective study skills; acquiring depth of understanding; gaining skills in collaboration; and developing confidence in problem-solving abilities. As one STEM LCparticipant noted, “I learned different ways of approaching a problem, and if I didn’t understand something, the group was able to help.” Another participant stated, “I study more efficiently and more often” as a result of this experience.

Mithra Marcus, clinical professor of chemistry, is excited by the impact of the STEM LC program on her students. She noted, “This program has helped my students think critically about course material rather than just focus on memorizing facts.” Such an emphasis has translated into improved learning outcomes for participants. Significantly higher exam scores have been achieved by LC participants in all of the courses in which LCs are offered. In the case of chemistry, STEM LC participants scored more than five points higher, on average, than their peers on a standardized, nationally normed chemistry examination.

Through my own involvement with the STEM LC program, I am reminded that my job is not to simply tell students what is important to know. If I truly want my students to beactive learners, critical thinkers and effective problem solvers, I must find ways for them to connect with one another and with the material in deep and meaningful ways. The STEM LC program appears to offer an effective strategy for doing just that.

Read more from CAS Spotlight

]]>“I mainly have been studying clouds and how they’re organized on different time and length scales,” Stechmann said. “I’m trying to understand the various aspects of weather and climate that aren’t understood now. I want to improve the models that are used to predict weather and climate.”

Weather forecasters use certain equations to see what the atmosphere will look like in the future. Stechmann wants to create the correct equations and different strategies for solving them on a computer.

“It all goes back to an independent study I did at St. Thomas,” he said. His senior year, Stechmann took an independent-study course, Fluid Dynamics and Numerical Methods for Fluid Dynamics, taught by Doug Dokken, Kurt Scholz and Mikhail Shvartsman.

“I started off at St. Thomas as a pre-med student but then I got to know some of the older students majoring in math and I just really liked it. I enjoyed the challenge,” Stechmann said. “I really liked doing physics, math and chemistry [his three majors at St. Thomas] so when I went to grad school I chose weather and climate classes because it employed all three.” Stechmann earned a Ph.D. in mathematics at Courant Institute of Mathematical Sciences, New York University, last May.

He received two fellowships for his postdoctoral research at UCLA: A mathematical sciences fellowship from the National Science Foundation and a climate and global change fellowship from the National Oceanographic and Atmospheric Association.

In a few years when he’s done with his postdoctoral research,he hopes to teach and do research as a tenure-track professor.

“I’d like to come back to Minnesota, but you usually can’t be so picky,” said Stechmann, a Red Wing native.

**Colleen Duffy ’03 **– *Assistant Professor *At the University of Wisconsin-Eau Claire, Colleen Duffy knows that students enter her classroom with different levels of appreciation for math.

“There are students who dislike math and when they are done with class, they dislike math less,” she said. “A lot of students come in thinking math is interesting. I can share with them the cool parts of math and it’s great to see the light come on when they finally understand something. Math majors are really excited about math, and I help them explore it further.”

This is the profession Duffy envisioned many years ago. In high school, she helped her friends with their math homework, competed on the math team and completed math independent-study classes. So it was natural for her to major in mathematics at St. Thomas. She also majored in Spanish and minored in physics.

“I was friends with everyone on the faculty. They helped me get into graduate school and helped me succeed,” Duffy said.

“Cheri Shakiban was my adviser so I did a lot of research projects with her that greatly helped me in my Ph.D. program. I did applied research projects such as studying the stability of structures.” One project was inspired by the study of the historic collapse of the Tacoma Bridge in Washington. The suspension bridge collapsed in 1940 due to wind-induced vibration.

“We looked at a variety of structures to determine under what forces the structures would collapse. I set up a system of equations to see what happens if you change the number a little bit – is it still stable or will it collapse?”

Her independent study in abstract algebra with Melissa Shepard Loe helped her decide to concentrate in algebra in graduate study. Duffy earned a Ph.D. in mathematics from Rutgers, The State University of New Jersey, last May.

Duffy teaches three classes a semester at UW-Eau Claire. Her research focuses on noncommutative algebra.

**Tom Dahl ’01 **- *Actuary *It’s risky business, but that’s what an actuary loves. Tom Dahl deals with the financial impact of risk and uncertainty. He is an actuary at Federated Mutual Insurance Co.’s home office in Owatonna.

Federated specializes in business insurance; Dahl is one of four employees who works in the actuarial health insurance division.

One of his responsibilities is pricing. As most Americans are aware, health insurance costs continue to rise. Dahl explained,“Pricing is based on what it cost last year. We look at trends and we project how much it will cost the next year. We set our premiums so we’ll be able to make a small profit or at least break even.”

Dahl enjoys his work at Federated. “I get to see all phases of the health insurance process and I have a lot of autonomy in my work. I have friendly co-workers,” he added.

When he started his freshman year at St. Thomas, he knew that he would major in actuarial science. Later he tacked on a major in math.

“I always liked math,” Dahl said. His cousin worked for State Farm Insurance and suggested Dahl might like actuarial work, so in high school he participated in a mentorship program with St. Thomas alumnus Joe Paul ’88, an actuary.

His adviser at St. Thomas, Heekyung Youn, who taught several of his classes, helped him find an internship. For two years he interned at Mercer Consulting and worked with state Medicaid programs. He was hired at Mercer in Minneapolis after graduation and worked there until 2004.

“Then I decided that I didn’t want to live in the Twin Cities anymore. I needed a break so I moved to Owatonna for the Federated job. It’s a more relaxed pace of life – no rush hour! It takes me four minutes to drive to work ,” said Dahl, a Moorhead native.

Read more from CAS Spotlight

]]>