Graduate Engineering Course Catalog

ETLS 500-599 Introductory and Overview courses

ETLS 501 Manufacturing Systems

A comprehensive review of modern production methods and systems for production and service industries. Topics include location and facility layout, job design and measurement, group technology, push/pull systems, process planning, forecasting, production and capacity planning, scheduling and manufacturing systems. The course also provides a brief review of FMC, FMS, CNC, DNC and computer-integrated manufacturing.

 

ETLS 502 Manufacturing Processes

An overview of manufacturing processes with the objective of establishing the processes most appropriate to the characteristics and production requirements of the product. Metallurgy is briefly reviewed as a basis for material processing. Many conventional methods of fabrication are covered. Design for manufacturing and assembly techniques will be studied along with assembly methods and flow. Clean rooms and electronic assembly are also covered. Students unfamiliar with manufacturing processes will need to do independent study to determine all of the processes available.

ETLS 504 Excellence in Operations

An advanced course in concepts essential to achieving excellence in operations. The course covers the development and implementation of a coherent manufacturing strategy consistent with business and corporate strategies; importance of global competitiveness; and structuring of the production process based on the manufacturing mission. The human interaction involved in current quality issues, Just In Time (JIT), Total Productive Maintenance (TPM), set-up time reduction, simultaneous engineering, lean manufacturing and contemporary logistics systems, employee involvement and teamwork are key concepts of this course.

 

ETLS 505 Managerial Accounting and Performance Management

This course integrates the concepts of financial accounting, cost accounting and performance measurement as they are applied in the enterprise. The course emphasizes the concepts, terms, and techniques for using accounting and measurement information in planning, decision-making, and performance evaluation. Topics include analysis of financial statements, manufacturing and operations costs, fixed and variable costs, capital investment analysis, pricing, job and process cost systems, budgeting, responsibility accounting, cost allocation, and activity-based costing. Also covered are operational measures emphasizing physical units, process analysis, productivity measurement, and other non-accounting operational key indicator measurements. Consideration is also given to the influence of such concepts as Total Quality Management (TQM), Just In Time (JIT), Benchmarking, the Balanced Scorecard, Reengineering, Six Sigma, and Baldrige Awards as they relate to accounting and performance measurements.

 

ETLS 506 Statistical Methods for Manufacturing Quality

An introduction to the basic philosophy of the statistical tools used to assure manufacturing quality. Tools to include: hypothesis testing, regression analysis, analysis of variance,  process capability,  control charts (SPC), and six sigma. Students will conduct and report an industry-based statistical application project.

 

ETLS 507 Introduction to Systems Engineering

This course considers the engineering of both natural and human-made systems as well as the analysis of those systems. The principal focus of the course will be relating to the initial creation an development of complex systems. In general, this will relate to the development of systems which cross multiple domains of expertise. The course will convey to the students the essential elements of systems engineering; including systems thinking, systems analysis, system architecture, the decomposition and re-composition of systems design, risk management, reliability, maintainability and availability, and the coherent structure of a systems view. This course will be ideal for any student seeking to expand their current project management skills to enable them to effectively execute large and complex programs, or simply to manage their current projects with a systems view perspective.

ETLS 508 Systems Design

This course provides the student with an overview of the processes involved in the analysis, design, and implementation of systems. This is a hands-on course and is targeted at graduate students. Topics to be covered include the development life cycle, feasibility studies, requirements analysis, systems analysis, and systems design. Systems analysis and design methods covered in this course include both a software and hardware approach. 
Module 1 - Systems Analysis Fundamentals 
Module 2 - Practical Systems Analysis 
Module 3 - Practical Systems Design 
Module 4 - Introduction to Object Orientation 
During the semester, the student will be involved in the analysis and design of a complex system. This project is an important part of the course because it provides the opportunity to confront real-life situations and problems during the systems analysis and design process. It is, therefore, essential for the student to be actively involved in this project. Students are required to learn the necessary technology to contribute to the project in a meaningful way.
Prerequisite: ETLS 507 Introduction to Systems Design

ETLS 509 Verification and Validation: Integration and Beyond

This graduate course considers two closely related but distinct concepts in systems engineering, verification and validation. Verification is “The process of evaluating a system or component to determine whether the products of a given development phase satisfy the conditions imposed at the start of that phase.” (IEEE Standard Glossary of Software Engineering Terminology, Standard 610.12-1990.) Validation is the act of assessing the requirements, design, and development of a product to ensure that it will meet the user’s requirements, operational needs, and expectations at the time of delivery. These activities occur throughout the systems engineering cycle, not simply at the end. Systems engineering verification and validation practices will be studied and applied in appropriate situations. 
Prerequisites: ETLS 507 - Introduction to Systems Design, ETLS 508 - Systems Design

ETLS 520 Design and Manufacturing in the Medical Device Industry

This course is designed to provide an introductory overview of the medical device industry, and it’s unique design and manufacturing challenges. The course first examines the industry itself, reviewing basic industry statistics, current trends, and the many types of products that make up the medical device industry. It then helps students understand the fundamental systems that are used in the design, development, and manufacture of medical devices and how these relate to regulations governing the development and manufacturing processes. Finally the course explores in detail some of the unique aspects of manufacturing a medical product such as special material and process selection considerations, clean rooms, sterile packaging, sterilization processes, clinical testing, lot traceability and manufacturing control.

ETLS 530 Fundamentals of Engineering for Educators

This is a one-semester survey of engineering topics. Topics will span the role of engineering in society, statics, material strength, engineering design, machine design, manufacturing, electronics, computer programming, sensors/controls, thermodynamics and fluids. The course will have weekly lab sessions which will allow students to apply what they are learning from lectures in a hands-on setting. Emphasis will be placed on how the material is used by practitioners. Numerous examples will be given of how this material can be presented in a way that meets Minnesota education standards. Each topic unit will include a component dedicated to the historic and current relevance of the concepts and skills presented. Whenever appropriate, and feasible, guest lectures and field trips will be arranged. The goal of this course is to provide teachers with a short, hands-on introduction to a variety of engineering.

 

ETLS 550 Leveraging Leadership for a Lifetime I (Offered as the initial course within the MSTM graduate program) (One Credit Course)

This course provides a comprehensive orientation to the newly accepted student in the MSTM program as well as launching the learning process for the upcoming three to five years.  The student will build a base-line assessment of his/her competencies, values, learning style, leadership aptitude and personal/professional talents; build understanding of the graduate program’s mission, vision and values and its “fit” with participant’s values; identify key communication competencies that need strengthening; shape a learning plan that will serve as her/his contract for the next 3-5 years of professional life (graduate program, work, community, etc.); develop learning action steps that involve key stakeholders in their communities; and be assigned to a peer group that will serve as a support vehicle for applications of the learning process. Expectations for the learning process will be identified; tools for student evaluation of program outcomes selected; portfolio design/development will be outlined; and critical communications tools/methods will be examined.

ETLS 551 Strategic Quality Management

Strategic Quality Management is presented as a 
Driver → System → Results model. 
The DSR model provides a framework for better understanding your business and when and where to take action to improve results. The model is a tool that links company mission, strategic plans, competitive positioning, and customer focus as the Driver. People and processes form the System that actually designs, produces, and delivers products and services. Results include financial, customer, employee, and process. This course also connects the DSR model with the Malcolm Baldrige Criteria for Performance Excellence, six sigma and lean improvement tools, ISO9000, and Quality Management Systems and tools such as Statistical Process Control (detailed training in tools such as SPC is not part of the class). In addition to developing an understanding of how to guide and manage quality strategically, the course also helps to identify and prioritize the "right questions to ask" to guide and manage tactically. Applying the course to real world situations should lead to improved results - financial, customer, employee and process.

 

ETLS 552 Supply Chain Synchronization

This applications-oriented course will review key topics in supply chain management and integrate these topics with current management thinking in lean manufacturing and six sigma. A systems thinking approach that maps logistics, forecasting, warehousing, transportation, and information systems will be combined with discussions of vendor and customer relationships, motivations, and ethics to work toward a smoothly functioning supply system. Students will use proven industrial engineering and management principles, techniques and tools to design a supply chain for their industry, efficiently and effectively plan and layout manufacturing operations, and improve processes to eliminate waste.

ETLS 555 Advanced product Design

Mechanism and optimum design play a key role in the design of mechanical products.  Regarding mechanisms, given prescribed motions of objects or paths associated with points, the design synthesis process is used to create a mechanism that can accomplish the task, at least approximately.  Focus is on 2D mechanism design (mostly 4-bar linkages) with exposure to 3D robot kinematic analysis.  Computer simulation software (e.g. MATLABTM and SolidWorksTM) is used to create animations of various mechanisms to better facilitate understanding of their motion.  Famous historical collections, such as those by Franz Reuleaux and Leonardo Da Vinci, and others are also examined.  Optimum design theories such as unconstrained & constrained optimization and linear programming are introduced, along with their application. Team design projects (1 mechanism design, 1 optimum design) drawn from current application interests and industry are assigned.

Purchasing, Logistics and Distribution

An introduction to the operations aspects of logistics combined with an overview of Supply Chain Management. Topics will include purchasing, vendor relations, inventory strategies and control, warehousing, material handling, packaging, and transportation, combined under supply chain management philosophy. The course will be taught through lectures, problem sets, case studies, guest speakers, and a tour of a high volume, order fulfillment facility. 
Prerequisite: ETLS 505 Managerial Accounting and Performance Management is recommended but not required.

 

ETLS 571 Automation Systems in the US and Overseas

This course provides an examination of automation and the processes and systems in which it works. The course focuses on electronic, electromechanical, and mechanical manufacturing and also touches on highly automated molding and its tooling. Topics include flexible and hard automation within a variety of systems environments. The course moves from automation basics to designing for automation followed by a hard look at the processes such as group technology, sensors, and systems that allow for and improve automation. The course consists of lectures, guest speakers, videos, and visits to factories and laboratories.

ETLS 591 Advanced Thermal Sciences

This course provides an overview of fluid mechanics and heat transfer with a focus on the design of thermal systems. These systems include applications in the biomedical, aerospace, manufacturing, HVAC, and electronic cooling.

 

ETLS 600-699 General Systems Courses

ETLS 601 Program/Project/Team Management

Focusing on the applications of project management, students gain insight and understanding of the day-to-day activities of project management (including cost analysis and scheduling techniques) and exposure to software options. A significant portion of the course focuses on conflict resolution, time management, leadership, and other personnel-related topics with the goal that engineers might effectively carry out the requirements of their companies without paying a penalty in lost good will or personnel.

ETLS 602 Management Science

On one-level, management science is a set of tools based on mathematical models of business actions such as allocating resources, planning production, scheduling work, and managing inventory. On another level, it is computer software that implements these models and converts business data into useful solutions. At a higher level, management science is a philosophy of observation and analysis of business systems with the goal of minimizing costs and maximizing resource utilization and profit. This course looks at all three levels with emphasis on generating computer solutions and interpreting and implementing the results.
Prerequisites: ETLS 504 Excellence in Operations (MMSE 510) and ETLS 506 Statistical Methods for Manufacturing Quality (MMSE 615)

 

ETLS 603 Design to Production Transition

Many functions are necessary to bring a product from the concept phase to full scale mass production. This course provides an overview of the sequence of steps required, and addresses the many milestones and interactions that engineers deal with in leading a successful product scale-up. The course focuses on leadership and covers product design for manufacture, an introduction to various engineering and manufacturing processes and an overview of managing a program of product scale-up. Developing a comprehensive plan, estimating factory cost for up-front business evaluation, and sell the proposal is included. Dealing with functions such as management, cost accounting, patent attorneys, equipment designers, manufacturing plants, vendors and related support groups is addressed.
Prerequisite: ETLS 502 Manufacturing Processes

 

ETLS 620 Analog Communication Systems

Introduction to Fourier analysis of noise and signals, analog modulation techniques including amplitude modulation, frequency modulation, and phase modulation, pulse code modulation, behavior of analog communication systems in the presence of noise, information theory, and source coding.

ETLS 640 Lean Six Sigma

Lean Six Sigma is a seminar course designed for combining Six Sigma Quality and Lean speed.  Guest speakers will be utilized to develop knowledge of the inter-relationship of these two concepts and how to develop plans for product and process improvements in development, production operations as well as in service activities.  Each student will create specific plans for their organizations using these concepts.

ETLS 650 Leveraging Leadership for a Lifetime II

Offered at mid-point - after the student has completed 5-8 courses in the MSTM program. (One Credit Course)

This course, through a variety of methods, assesses  progress with the learning process, re-evaluates growth in key leadership dimensions, and identifies critical success factors to date. As a result of the renewed assessment profile, the student will: modify learning action steps as needed; build broader and deeper understanding of team effectiveness, workplace applications of learning to date; and development of leadership competencies; share presentations and writings with peers, seeking feedback and demonstration of newly developed competencies; deepen his/her understanding of the impact of the global environment on technology strategy; and develop competencies with social and ethical responsibilities. Portfolio design and development will be evaluated; communications skills enhanced and a beginning leadership agenda will be shaped.
Prerequisite: ETLS 550 Leveraging Leadership for a Lifetime I

 

ETLS 652 Technology Forecasting and Risk Management

The course will develop approaches to analyzing the technological environment and attendant risk exposure and anticipating future changes through lecture, discussion, group assignments, readings, books, and individual projects will reinforce key course concepts. Each student will choose a specific topic for study such as a technology or set of related technologies, an industry or market, or an economic/political region or country and will develop materials that can be applied in anticipating future technological and social change in the topic area. These student topics will form part of class discussions. Students should be prepared to discuss their progress as it relates to topics being developed in class.

Prerequisite: None

 

ETLS 670 Masterful Leaders and Leadership

This course challenges the learner to make a fundamental decision to refocus their minds in a leadership way of thinking which is about personal maturity and its impact on the bottom line. The focus is on emotional intelligence, culture, and leadership greatness.

ETLS 671 Human Aspects of Technical Management

Managers use written, oral and non-verbal communication to accomplish many purposes. This course teaches the student techniques and practice skills for targeting your audience, coaching and supporting employees, interviewing, salesmanship, performance management, personnel selection and employee development, conflict management, running meetings, problem solving and decision making, teamwork, networking and customer and vendor relationships.

 

ETLS 672 Excellence in Product Design

This course focuses on key elements which comprise "excellence in design." An overview of the psychology and philosophy of design are presented. Constituent criteria for design excellence are explored in depth. Guest lecturers with experience in industrial design and design psychology will present to and engage with the class. Each student will, through class discussion, reading, tours, presentations, personal research and book reviews, rigorously approach what "design excellence" and the psychology of design means for him/herself. The course is presented in a format designed to stimulate a high level of interaction and discussion.

ETLS 674 Managing for Improved Profitability

This course covers both the strategic and tactical aspects of improved profitability by analyzing historical cases and real-world examples of both industrial success and failure. Successful and unsuccessful strategies and tactics are then contrasted to provide useful insights in strategic and tactical performance management. Measurements are examined to demonstrate how measures related to strategies and critical success factors can be used to improve performance. Techniques such as activity-based management, lean operations, re-engineering, function and process analysis, just-in-time, constraint theory, team management, six-sigma, TQM, flexible manufacturing and capacity planning are studied for applications to performance improvement and cost management situations.  Subject or topic matter experts are used as guest lecturers to point out lessons to be learned in the practical implementation of performance improvement initiatives. Class members are expected to prepare a methodology and plan of implementation for at least one performance improvement initiative.
Prerequisite: ETLS 505 Managerial Accounting and Performance Management

ETLS 677 Sustainable Development Strategies

Students will demonstrate an understanding of the many environmental and social equity issues and solutions faced by business. They will be given the tools such as, life cycle management, eco-efficiency, and design for environment, etc., to propose solutions related to sustainable development for these issues. Students will learn about environmental controls, regulations, waste management issues, etc. and how they can be addressed. Through required outside reading, they will see both an industrial and environmental perspective of sustainable development. This course will contain technical information and calculations necessary for industry to evaluate energy alternatives, product impacts, design alternatives, and environmental control options as well as financial impact.

ETLS 682 Safety, Health and Environmental Considerations in Manufacturing

This course focuses on some of the safety, health and environment factors that influence manufacturing. Emphasis is placed on developing a practical working knowledge of these issues. Program development and management as well as the roles of regulatory agencies and the judicial system will be examined.

ETLS 699 Selected Topics

Manufacturing and leadership topics will be presented. (This course may be repeated for credit.)

 

ETLS 700-799: Engineering and Technology Courses

ETLS 701 Design of Experiments

This course provides the student with a set of skills to improve products and processes already in manufacturing as well as to develop products and processes in the development stages. The definition of DOE promoted is “a tool to assist in the process of understanding a system.” There will be discussion of how DOE fits into the overall product lifecycle and where it applies in the area of testing. Tools covered include full and fractional factorials, central composite, Box-Behnken, Taguchi, Evolutionary Operation and the method of steepest ascent. Theoretical statistics understanding is assumed prior the course. A standard, simple process will be presented which allows for improved communication and user confidence in using the tool set. The primary objective is to assist the student with implementing the skills learned during the course. This is an application-orientated course that includes case studies, team projects, student presentations and reports, guest lecturers and use of computational software. A quick statistical overview will be provided in the class as a refresher, but is not intended to cover the subjects in depth to students new to the subject. It is recommended students review all of the topics prior to starting the class.
Prerequisite: ETLS 506 Statistical Methods for Manufacturing Quality

ETLS 720 Anatomy and Physiology for Medical Devices

This course teaches fundamentals of anatomy and physiology for nerves, muscle, heart, blood vessels, gastrointestinal system, urinary tract, liver and hormones. A broad range of disease states and medical devices are introduced to help students better relate to the anatomic and physiologic information presented. Class experience also includes guest speakers, one site visit at a local hospital and student presentations about devices and medical conditions.

Note: Credit will not be given for both ETLS 720 and ETLS 730 Cardiovascular Anatomy, Physiology and Medical Devices.

ETLS 721 Medical Device Regulatory Submissions

This course teaches the student about submissions for regulatory approval of medical devices.  Topics include: medical device law, custom and research devices, significant and non-significant risk devices, FDA investigational device exemption, 510(k) substantial equivalence determination, pre-market approval, PMA supplements, third party review, combination devices, European economic area CE mark, international harmonization, MDR, device tracking, post market surveillance, annual post approval reporting.  Depending upon the degree of class interest medical devicesubmissions in Canada, Australia, and Japan may be covered.

ETLS 722 Medical Device Quality Systems

This class will focus on the quality system requirements, from a regulatory viewpoint, for medical device manufacturers. The majority of the class time will be spent reviewing the FDA Quality System Regulation as well as ISO 13485 in relation to the ISO 9000 Series requirements. There will be general discussion on the U.S. and European submission process, especially in context of changes related to the quality systems that have been implemented. A few classes will focus on FDA inspections, and the ramifications of non-conformance. Classroom methodology will be lectures with substantial student interaction encouraged. Students will be encouraged to share their experiences from their own companies regarding the subjects being discussed. Some portions of several of the classes will be presented by students, sharing what they have learned from small group interaction during class time.

ETLS 723 Introduction to Biomedical Engineering

In this introductory course we will cover a broad spectrum of topic related to Biomedical Engineering. The goal of the course is to give the student a more comprehensive understanding of many of the topics related to Biomedical Engineering and begin to see how they must all fit together in a biomedical device. We will also review and discuss a number of real world devices and the issues involved in their design.

ETLS 724 Medical Device Clinical Studies

This course teaches clinical study design, research hypotheses, statistical considerations, clinical study planning and execution.  Students are trained to apply this information to include clinical studies that encompass a wide variety of clinical objectives: prototype evaluation, pivotal studies, FDA approval requirements, marketing claims, customer acceptance, reimbursement, etc.  Other topics include data form design, databases, applicable U.S. and  International Regulations and selected topics of interest.

ETLS 730 Cardiovascular Anatomy, Physiology and Medical Devices

Lectures and instructional materials will emphasize the anatomy and physiology of the heart and blood vessels. Topics in general, nerve and muscle physiology will also be presented, since they are important in understanding how the heart and cardiovascular systems functions. Many cardiovascular diseases and contemporary cardiovascular devices will be covered during lectures and in student presentations. Guest speakers and a trip to a local Cardiac Catheterization Laboratory will complement the instruction materials.
Note: Credit will not be given for both ETLS 720 Anatomy and Physiology for Medical Devices and ETLS 730.

ETLS 731 FDA Biologics (Combination Products, Drugs & Biologics)

This course gives an introduction to the submission approval process, validation, manufacturing and quality requirements for combination products, drugs and biologics. Course topics will include a historic overview, the process to determine which FDA Center controls the regulatory process, applicable regulations and post-market approval practices for these products. Students will learn how the regulations and practices at CDER and CBER differ from CDRH. They will also learn how the FDA designated controlling center will shape the submission clearance/approval process, manufacturing control and post-market requirements for a combination product.

 

ETLS 737 International Regulatory Affairs for Medical Devices

The course will provide an overview of the international medical device regulation including EU nations, Japan, Canada, Australia, Latin America, and other emerging markets. It will include case studies of the current international regulatory climate to help students develop practical applications and interpretations regarding the enforcement of these regulations.

ETLS 748 Renewable Energy Generation

As energy is one of the most important issues of this century, this course will provide the basic understanding of various Renewable and Classical electric energy generation techniques. It will cover, among others, Thermal, Hydro, Nuclear, Solar and Wind based power generation. It will also cover certain basic aspects of power storage and delivery. This course will help students in evaluation and analysis of various energy systems in the context of Technology, Economics and sustainability.

ETLS 751 Electromagnetic Fields and Waves

An introduction to the practical consequences of MEs including propagation, reflection and absorption of E&M waves. Applications include antennas, waveguides, transmission lines, and shielding; aka dynamics.

ETLS 752 Analyzing and Anticipating Technological Change

This course assists the student in developing a framework for understanding the technological environment and the process of technological change and in developing technological and strategic foresight. 

Topics will include:

  • Techniques for describing, monitoring and understanding trends and forces in the technological environment;

  • An overview of the  history of technological change and analysis of the relationship between technological change and forces in the economic, social, political and natural environments;

  • Application of these concepts in the development and use of models for anticipating and planning for future technological and strategic change.

ETLS 770 Automated Control of Manufacturing Processes

An introduction to the key elements of control systems employed in manufacturing with examples from both batch and continuous-process applications.  First, the fundamental theory of operation for closed loop (binary and analog) control systems is developed.  Students will explore using PLCs to implement modern systems and become familiar with a PLC programming language.  Second, the theory of operation and performance limits of sensors and actuators used in the industrial environment is explored.  Some sensors to be considered measure position, speed, temperature, flowrate, level, and force.  Some actuators to be considered include pumps, hydraulic and pneumatic cylinders, heaters, valves, stepping motors, and AC and DC motors.  Future trends in control systems targeted for the manufacturing plant will be presented.  Students will demonstrate their ability to automate a manufacturing cell and quantify the cost impact of the project on the manufacturing example chosen in a term paper.
Prerequisite: Instructor's permission for MS and Certificate

ETLS 771 Materials Engineering

This course introduces the student to theory and application of engineering materials.  While particular emphasis is placed on traditional structural materials, emerging materials technology is also discussed.  Topics explore the physical and mechanical properties of metals, polymers, ceramics, and composite materials.  Useful applications and limitations of those materials are presented, and means of modifying their properties are discussed at length.  Guest speakers and industrial tours supplement traditional learning by exposing the student to practical materials application, processing and evaluation.

ETLS 772 Injection Molding, Die Casting, and Related Net Shape Processes

This course covers the creation of tooling for thermoplastic injection molding, die casting, blow molding, and other related net shape processes.  In-depth coverage is given to mold design and process parameters.  Part design issues related to these processes are investigated including material selection, part geometry, and cost estimating.  Computer tools applicable to net shape manufacturing are also discussed including CAD, flow analysis, rapid prototyping systems, and expert systems.
Prerequisite: ETLS 502 Manufacturing Processes

 

 

 

ETLS 773 Principles of MEMS Product Development

The field of Micro-Electro-Mechanical Systems (MEMS) refers to the design and manufacture of micron-scale devices which can ultimately be used to create both sensors and actuators that promise to be very small, very lightweight, very inexpensive, and very precise.  By leveraging the mature state of semiconductor fabrication techniques within the integrated circuit industry, MEMS devices are beginning to emerge in the automotive, medical, aerospace, telecommunication, and biotechnology industries.  This course will investigate the entire process of developing a micro-sensor idea into a product.  Along the way, topics of discussion will include picking an appropriate application of the MEMS technology, designing a MEMS device, MEMS fabrication and packaging techniques, the challenging aspects of characterizing MEMS devices, and the unique physical environment that exists at the micron scale.  Other discussions will address the existing MEMS market, the future of MEMS and the difficulties associated with establishing a successful MEMS business.  The course will be taught through real world examples of existing MEMS implementations, drawing on both the successes and failures of past efforts to paint a realistic view of this exciting yet challenging new technology.
Prerequisite: ETLS 771 Materials Engineering

ETLS 774 Introduction to Mechatronics

This course provides an introduction to mechatronic systems (i.e., intelligent electromechanical systems)  that is useful to individuals managing the design or manufacture of such devices or as the foundation for further study in mechatronic design.

ETLS 775 Polymers in Design

This course focuses on describing: what polymers are; how they are manufactured; why they behave the way they do; and how they are fabricated into structural objects-parts, fibers, films; how they can be compounded into alloys, reinforced composite structures, flexibilized toughened structures; how they are increasingly being used in functionally active roles-photopolymers as imaging elements in the printing and electronics industries, polymer membranes in separation processes, polymer fiber optics, photonic elements and optical discs.  The presentation method is highly descriptive with frequent reference to commercial examples and attempts to avoid, to the degree compatible with qualitative understanding, detailed excursions into underlying chemistry and rigorous mathematical physics.
Prerequisite: ETLS 771 Materials Engineering

ETLS 776 Advanced Engineering Materials

Provides a comprehensive overview of ceramic materials and processing with special emphasis on newer so-called advanced ceramics.  Examples include aerospace materials, bioceramics, engine components, optical fibers, multilayer electronic substrates, and oxide superconductors.  The goal is to familiarize students with the broad array of ceramic materials, their uses, advantages, and disadvantages.  Important design and manufacturing issues will be discussed.  Specific topics will include glass processing and properties, ceramic powder processing, advanced processing, composites, mechanical properties, electrical ceramics, traditional and advanced applications, and related background materials such as crystal structures and phase diagrams.

Prerequisite: ETLS 771 Materials Engineering

ETLS 777 Finite Element Analysis

This course teaches techniques which are needed to apply the finite element method to a wide array of engineering problems. The course will utilize the ANSYS FEA software for addressing problems in structural and thermal mechanics. The sole course assignment will be a major design project which will be based on real-world engineering application. The outcome of the design project will be a report of publishable quality.

ETLS 778 Process Design and Improvement - Computer Based Tools

An introductory graduate course covering various computer based tools such as EXCEL, VISIO, VBA, and ARENA to understand and improve business operating systems; manufacturing, service or a combination. Major emphasis will be on using these tools to document and analyze process design and/or improvement problems from students’ work environments.
Prerequisite: Basic knowledge of statistics and Excel

ETLS 783 Practical Study and Training in Manufacturing (1 credit course)

A work oriented/internship opportunity to experience U.S. manufacturing techniques in a real-world setting for students who seek on-the-job manufacturing experience. May be taken three times for credit. 

ETLS 785 Simulation of Logistics and Industrial Systems

This course covers current software and methodologies used to model and simulate manufacturing processes, logistics and industrial systems. After studying a leading simulation tool in detail, a term project requires each student to evaluate the potential role of computer simulation in his/her work environment.
Prerequisite: ETLS 501 Manufacturing Systems  and ETLS 778 Process Design & Improvement - Computer Based Tools

ETLS 789 Simulation of Visualization of Dynamic Systems

Many engineering systems are inherently dynamic in nature. Characterizing and designing such systems requires mathematical modeling, simulation, and visualization using modern software such as MATLAB(TM), SIMULINK(TM), and SolidWorks(TM), possibly with add-on modules. Lectures focus on the detailed applied mathematical modeling of a variety of systems from different energy domains with a bias towards mechanical systems such as mechanical translational, mechanical rotational, hydraulic, thermal, among others. The basics of “bond graph theory,” a unifying theory based on a chemical bonding analogy, is discussed as well. The integrated laboratory has 3 components to it: (1) software training (as necessary) in MATLAB(TM), SIMULINK(TM), and SolidWorks(TM), including “add-ons,” and “toolboxes” as needed, (2) developing dynamic models using MATLABTM and SIMULINKTM, (3) creating CAD models of systems, and (4) integrating the dynamics models with the visualization to create computer animations of the resulting motions of the mechanical systems. Students also work on a team-based dynamic simulation and visualization of mechanical systems project. This course currently serves as one of several “Mechanical Systems and Control” concentration courses for the newer MSME program.

ETLS 799 Selected Topics

Manufacturing and leadership topics will be presented. (This course may be repeated for credit.)

 

ETLS 800-899: Specialized, Advanced and Final Courses

ETLS 808 Capstone Course

The ETLS 808 Capstone Course has been replaced by ETLS 858.  

ETLS 810 Advanced Control Systems

This class is a continuation of the undergraduate course ENGR 410 – Control Systems and Automation. As such, we assume that you are comfortable with frequency domain control techniques including Laplace transforms, root locus, Bode plots, PID controllers, etc. We will start with the final few chapters in Nise and then add material on optimal controllers and Kalman filters.

ETLS 815 Leadership and Technology

This course is designed to offer students a framework from which to approach the following observations:
Technology mediates human connections,
Any new technology inherently carries leadership challenges and change dynamics,
Understanding and using specific analytical frames will offer ways to make sense out of the often contradictory nature of techno-effects. The purpose of this course is to provide each student both a "hand-on" feel for the mediating effects of technology, and a clear set of analytical frames from which they can make sense of their own technological challenges, both personal and institutional.

ETLS 840 Technology Transfer/Contemporary Problems

The rewards of technology transfer can be great, yet few have a comprehensive understanding of the subject. This course provides a broad understanding of the process of technology transfer including strategic fit, identification and selection of technology, licensing, structuring the transfer, and practical problems of implementation. The course is conducted in a seminar format, with experienced technology transfer guest speakers and hands-on use of the Internet and other resources for locating technology sources. Students will survey their companies, write a proposal for technology transfer, and develop a personal technology transfer network.

ETLS 841 Lean Six Sigma

This course number has been changed to ETLS 640.

ETLS 850 Leveraging Leadership for a Lifetime III (Offered at the conclusion of the MSTM student’s program—after 13-14 courses have been completed.) (One Credit Course)

This course aims to provide a capstone for the graduate learning experience, identifying key learning outcomes, measuring growth in all self-assessment areas and designing the life-long leadership and learning plans. As a result of the assessment at the completion of the program, the student will: identify leadership intentions for his/her future, based on broad understanding of leadership style, competencies and character; share his/her portfolio of learning with the class, demonstrating how this will be used in his/her workplace applications; give a final presentation on their learning process and how this will fuel their leadership/learning plans for a lifetime; develop a vision for their leadership stance/influence in 5-10 years; and finalize the metrics for measuring the Program Objectives.

Prerequisite: ETLS 650 Leveraging Leadership for a Lifetime II

ETLS 851 Enterprise Information Systems

This course examines the requirements and needs of companies and other organizations for operating information and, in particular, the capabilities of automated systems to manage, analyze and deliver this information. A review will be made of information system vendors that provide an integrated approach to information management including software features and equipment requirements. Systems that provide these features are typically referred to as Enterprise Resource Planning (ERP) or Enterprise Resource Management (ERM) systems. The process and techniques of assessing, designing, evaluating, selecting and implementing enterprise information systems in order to develop and establish a repeatable organization methodology for this process is actively studied and applied.
The importance of process flow documentation and change management are studied in relation to successful enterprise information system implementation. Preparing requests for vendor proposals and analyzing vendor responses to choose a supplier are also studied. Topics include sales quotation and order processing, purchasing, manufacturing resource planning, shop floor control, inventory control, capacity planning, job shop and repetitive manufacturing, quality control, master scheduling, financial accounting and cost control, human resource management, logistics, engineering operations and E-commerce as they relate to automated information systems.
Prerequisites: ETLS 505 Managerial Accounting and Performance Management and ETLS 601 Program/Project/Team Managemt

 

ETLS 852 Technology Risk Management

The objective of this course is to help the student identify and understand elements of uncertainty in assessing business risks associated with technological and social change. This course focuses on examples from business ventures and from new products arising from changing market demands. Students will be required to prepare a risk assessment for an existing venture, new product or large engineering project and to describe ways risks can be managed to improve the chance of long term business success including a competitive return on invested capital.

 

ETLS 853 Introduction to Intellectual Property Law

An introduction to intellectual property concepts, focusing on patents, copyrights, trademarks, and trade secrets, and emphasizing their role in strategic planning.

 

ETLS 855 Implementing Innovation

The primary goal of this course is to assist the student in becoming an effective leader who makes innovation happen.  Students will develop the ability to understand the innovation process and gain skills at leading an innovation project. The course objectives are to increase the students’ ability to 1) think broadly like an executive 2) build allies and supporters 3) communicate with people from a broad range of backgrounds 4) become a better communicator and advocate for getting acceptance of new technology in their company and 5) demonstrate courage and passion in a business setting.  
     The course will be conducted in a seminar format using readings, role-playing, presentations, video recording and individual and team practice.  Everyone will be expected to be prepared and actively participate in each class session

 

ETLS 858 Engineering Capstone

The Engineering Capstone course provides graduating Masters students with a long-term perspective on the rapidly-changing face of global industry and technology, and familiarizes class members with important concepts pertaining to developing company strategy and attaining company objectives.  The course emphasizes personally understanding issues of leadership and ethics in a global environment, and the impact of technical considerations in the context of a global society. Students will integrate concepts and ideas from their previous coursework and experiences into a cohesive body of knowledge, building on an awareness of 21st Century issues. An intended deliverable is that each student will personalize "the right questions to ask" for lifelong learning. In so doing, they will continue to optimize their effectiveness in the challenging global economy of today and tomorrow. 

Prerequisite: To register, students must be within six credits of completing their degree (excepting the Capstone) and have no grades of Incomplete.

ETLS 880 Directed Studies

This course is a faculty-supervised project involving research into manufacturing methods, systems or procedures that relate to real-world manufacturing situations. A specific project and methodology, appropriate to the student's program of study, is chosen with the approval of a faculty member.

Prerequisite: Advisors consent

ETLS 881 Engineering Project Credits

Finalization of entire engineering project and successful completion of the defense are required to obtain these credits. Selection of a topic for the project is part of the Engineering Project Seminar and is done in conjunction with your project advisor.

Course Number Title Credits
ETLS  501 Production & Operations System 3
ETLS  502 Manufacturing Processes 3
ETLS  504 Excellence in Operations 3
ETLS  505 Mgr'l Acct & Perform Mgmt 3
ETLS  506 Statistic Methods for Mfg Qlty 3
ETLS  507 Intro. to Systems Engineering 3
ETLS  508 Systems Design 3
ETLS  509 Verification & Validation 3
ETLS  520 Des & Mfg in Med Device Ind 3
ETLS  530 Fundamentals of ENGR for EDUC 3
ETLS  531 Engineering Design 3
ETLS  532 Robotics 3
ETLS  533 Sustainable Design 3
ETLS  534 Biologically Inspired Design 3
ETLS  541 Clinical Evidence 1
ETLS  542 FDA Submissions/Presentations 1
ETLS  543 Pre-clinical Testing 1
ETLS  544 Medical Device Reimbursement 1
ETLS  545 Medical Device Risk Mgmt 1
ETLS  546 Verification and Validation 1
ETLS  550 Leverage Leader for Lifetime I 1
ETLS  551 Strategic Quality Management 3
ETLS  552 Supply Chain Sychronization 3
ETLS  555 Advanced Product Design 3
ETLS  570 Purchasing, Logistics & Distri 3
ETLS  571 Automation Sys US & Overseas 3
ETLS  591 Advance Thermal Systems 3
ETLS  601 Program/Project/Team Mgmt 3
ETLS  602 Management Science 3
ETLS  603 Design to Production Transit'n 3
ETLS  620 Analog Communication Systems 3
ETLS  621 Digital Communication Systems 3
ETLS  640 Lean Six Sigma 3
ETLS  650 Leverag Leader for Lifetime II 1
ETLS  652 Tech Forecasting & Risk Mgmt 3
ETLS  661 Eng Economic Anal & Prod Cost 3
ETLS  670 Masterful Leaders & Leadership 3
ETLS  671 Human Aspects of Tech Mgmt 3
ETLS  672 Excellence in Product Design 3
ETLS  674 Managing for Improved Perf 3
ETLS  677 Sustainable Devlpmt Strategies 3
ETLS  697 Topics Course 2
ETLS  698 Topics Course 0 TO 3
ETLS  699 Selected Topics 3
ETLS  701 Design of Experiments 3
ETLS  720 Anatomy & Physiology for Med 3
ETLS  721 Med Dev Regulatory Submiss 3
ETLS  722 Med Device Quality Systems 3
ETLS  723 Biomat'ls in Design Med Device 3
ETLS  724 Medical Device Clinical Study 3
ETLS  725 Biomedical Engineering Prin 3
ETLS  731 Combo Products, Drugs & Biolog 3
ETLS  737 Int'l Reg Affairs for Med Dev 3
ETLS  740 Thermodynamics 3
ETLS  741 Heat Transfer & Fluid Flow 3
ETLS  742 Vibration & Control Theory 3
ETLS  744 Intro. to Power Systems 3
ETLS  745 Power Systems Operations/Cntrl 3
ETLS  746 Power Electronics 3
ETLS  747 Electrical Machines 3
ETLS  748 Renewable Energy Generation 3
ETLS  749 Digital Integr Circuit Design 3
ETLS  751 Electromagnetic Fields/Waves 3
ETLS  752 Anal & Anticip Tech Change 3
ETLS  771 Materials Engineering 3
ETLS  774 Introduction to Mechatronics 3
ETLS  775 Polymers in Design 3
ETLS  777 Finite Element Analysis 3
ETLS  780 Measurement for Quality 3
ETLS  783 Practical Study & Training 1
ETLS  789 Sim. & Vis. of Dynamic Sys. 3
ETLS  808 Capstone Course 3
ETLS  810 Advanced Controls 3
ETLS  850 Leverage Lead for Lifetime III 1
ETLS  851 Enterprise Information Systems 3
ETLS  852 Technology Risk Management 3
ETLS  853 Managing Intellectual Property 3
ETLS  855 Implementing Innovation 3
ETLS  858 Engineering Capstone 3
ETLS  880 Directed Studies 3
ETLS  881 Engineering Project Credits 3
ETLS  882 Non-Credit Project/Thesis Work 0